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The dynamical critical exponent z is a fundamental quantity in characterizing quantum criticality, and it is
well-known that the presence of dissipation in a quantum model has significant impact on the value of z.
Studying quantum Ising spin models using Monte Carlo methods, we estimate the dynamical critical exponent
z and the correlation length exponent � for different forms of dissipation. For a two-dimensional quantum Ising
model with Ohmic site dissipation, we find z�2 as for the corresponding one-dimensional case, whereas for a
one-dimensional quantum Ising model with Ohmic bond dissipation, we obtain the estimate z�1.
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I. INTRODUCTION

Conventionally, quantum criticality can be described by a
quantum-to-classical mapping,1 whereby a d-dimensional
quantum model is represented by a �d+1�-dimensional clas-
sical model in which the extra dimension corresponds to
imaginary time, �. It is well-known since the work of Hertz2

that this temporal dimension and the spatial dimensions do
not necessarily appear on an equal footing. In the presence of
dissipative terms in the action, for instance, long-range inter-
actions are introduced in the imaginary time direction,3,4

making the model behave as if it were �d+z�-dimensional
rather than �d+1�-dimensional. The dynamical critical expo-
nent z can be regarded as a measure of the anisotropy be-
tween the temporal dimension and the spatial dimensions, as
defined by the scaling of the temporal correlation length, ��

��z. Here, ���K−Kc�−� is the spatial correlation length
upon approaching a quantum critical point K=Kc, with K
being some arbitrary �nonthermal� coupling constant. Know-
ing the value of z is therefore of fundamental importance in
the study of quantum phase transitions, especially since this
critical exponent determines the appearance of the quantum
critical regime at finite temperatures above the quantum criti-
cal point.5,6 Such quantum critical points with an accompa-
nying quantum critical region have been suggested to be re-
sponsible, for instance, for the anomalous behavior of the
normal phase of high-Tc cuprate superconductors.7,8

To illustrate the effect of dissipation on the dynamical
critical exponent, consider first a generic �4-type nondissipa-
tive quantum field theory. The bare inverse propagator can be
obtained from the quadratic part of the action as q2+�2,
meaning that one has isotropic scaling between the spatial
dimensions and the temporal dimension, i.e., z=1. Adding
local Ohmic dissipation by coupling each spin to a bath of
harmonic oscillators,3 the inverse propagator is modified to
q2+�2+ ���. Assuming a phase transition to an ordered state
and taking the limit q→0, �→0, the dissipative term ���
will always dominate over the dynamic term �2, and so, by
using ��qz, we may naively make the prediction z=2. Note
that according to this argument, the dynamical critical expo-
nent for a given action is independent of the spatial dimen-
sionality of the system. We will refer to these scaling argu-
ments as naive scaling, and postpone any discussion of
caveats and other possible scaling choices to Sec. IV.

If one replaces this Ohmic site dissipation with dissipation
that also couples in space and not just in time, this situation
may change significantly. A common form of dissipation in
the context of arrays of resistively shunted Josephson junc-
tions and related models, is the Ohmic dissipation of gradi-
ents, i.e., of the bond variable that is the difference of the
quantum phase between the superconducting elements.9 In
Fourier space, this bond dissipation corresponds to an in-
verse propagator q2+�2+q2���. �See, however, Sec. IV.�
Once again letting q→0, �→0, we can from naive scaling
expect the dissipation to be weaker than in the onsite case
since in this limit q2����q2 for any positive z. A possible
value is therefore z=1, for which the spatial term balances
the dynamic term and dissipation can be considered pertur-
batively irrelevant in renormalization group sense.

Simple arguments of the kind given above have been the
approach most commonly used whenever a dynamical criti-
cal exponent is to be determined. In recent years there has
however been progress toward calculating the corrections to
these lowest-order estimates for z both by field-theoretical
renormalization group methods10–12 and by Monte Carlo
methods.12–15 In addition, there has also been considerable
recent interest in dissipative systems exhibiting more exotic
forms of quantum criticality where the critical exponents are
varying continuously.16–18

The most notable advance from our point of view is, how-
ever, the work by Werner et al.13 justifying numerically the
naive scaling estimate for the Ising spin chain with site dis-
sipation by extensive Monte Carlo simulations. More pre-
cisely, it was found that the dynamical critical exponent was
universal and satisfied z=2−�, with an anomalous scaling
dimension ��0.015. Apart from Ref. 13, almost no Monte
Carlo simulations have been performed on extended quan-
tum dissipative models. �See, however, Refs. 15 and 19 for
reviews of Monte Carlo simulation for dissipative systems
and quantum phase transitions.� The present work can there-
fore be regarded as a natural extension of the work done by
Werner et al., but more importantly as a first step toward
more complex dissipative quantum models with bond dissi-
pation. For instance, the dissipative XY model with bond
dissipation is very interesting both as a model of granular
superconductors or other systems which may be modeled as
Josephson junction arrays.9 In particular, such a dissipative
XY model20 and related Ashkin-Teller models21,22 have been
proposed to describe quantum critical fluctuations of loop-
current order in cuprate superconductors.
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Finding a value of z is also of considerable interest for
purely classical models that include strongly anisotropic in-
teractions. The reason is simply that performing a finite-size
analysis to find the critical coupling or critical exponents
requires a choice of system sizes that reflects an anisotropy
in the scaling of the correlation lengths. In other words, one
ideally needs to know the relative correlation length expo-
nent �� /�=z a priori for the finite-size analysis to be correct.

In this work, we seek to employ Monte Carlo simulations
of Ising models to answer the following questions: �1� can
we confirm numerically that the dynamical critical exponent
is indeed independent of dimensionality? �Neglecting the as-
sumed small �� �2� how will the dynamical critical exponent
for Ising variables change if one replaces the site dissipation
with dissipation that also acts in space? The first question
will be addressed in Sec. II, where we study the two-
dimensional �2D� quantum Ising model with site dissipation.
In Sec. III, we turn to the second question by studying a
one-dimensional �1D� quantum Ising chain with bond dissi-
pation in a similar manner. The results will be related to the
naive scaling arguments for z, after which we conclude in
Sec. V.

II. 2D QUANTUM ISING MODEL
WITH SITE DISSIPATION

We first consider a quantum Ising spin model in two spa-
tial dimensions coupled to a bath of harmonic oscillators,3

i.e., a higher-dimensional version of the model considered in
Ref. 13. In Fourier space, the quadratic part of the action for
this model can be written as

S = �
q

�
�
�K̃q2 + K̃��

2 +
	

2
����
q,�
−q,−�, �1�

where 
 is the Ising field. The discretized real space repre-
sentation on a L�L�L�-lattice then reads
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We have assumed a spatially isotropic system, so that Kx
=Ky =K. Periodic boundary conditions are implicit in the
imaginary time direction and are also applied for the spatial
directions. Note that our representation is equivalent to that
of Ref. 13, although superficially appearing slightly different.

We could, as Werner et al., take a quantum Ising model in
a transverse magnetic field as a starting point, and the field
would then give rise to the quantum dynamics of the spins as
represented by the second line in the action in Eq. �2�. How-
ever, in this work we are not interested in the effect of a
transverse field per se, and will therefore treat the dynamic
term as a phenomenological term of unspecified origin. �See,

however, Sec. IV�. In the following, we will fix the value of
the dynamic coupling of the Ising field to
K�=−1 /2 ln�tanh 1��0.1362 and vary the spatial coupling
K. For the �1+1�-dimensional model,13 this choice ensures
that Kc=1 for 	=0, whereas in the d=2 case it is chosen
primarily for computational convenience, and to allow for
direct comparison with the d=1 case. For the Monte Carlo
simulations, we have used an extension of the Wolff cluster
algorithm23 by Luijten and Blöte,24 which very effectively
treats the long-range interaction in the imaginary time direc-
tion. We have mainly used an implementation of the
Mersenne Twister25 random number generator �RNG�, but
also confirmed that other RNGs yielded consistent result. We
also make use of Ferrenberg-Swendsen26 reweighting tech-
niques which enable us to vary K continuously after the
simulations have been performed.

We will first present the phase diagram for this model in
the 	-K plane, as shown in Fig. 1. The phase diagram for the
�2+1�-dimensional model is very similar to that for its
�1+1�-dimensional counterpart, with a disorder-order phase
transition for increasing dissipation and/or spatial coupling.
Along the 	-axis, a temporally ordered state is reached at
	=	c through a purely dissipative phase transition when K
=0, in which case the model is simply a collection of decou-
pled �0+1�-dimensional dissipative two-level systems. The
long-range interaction in the temporal chains decays as
1 / ��i−� j�2, accordingly, the phase transition is of a kind
closely related to the Kosterlitz-Thouless transition,27 in
which the ordered phase consists of tightly bound kinks and
antikinks.

With the same temporal coupling values as for the d=1
case, we can with relative ease determine the critical dissi-
pation strength 	c for the independent subsystems, see the
result stated in Ref. 13.

We have chosen a somewhat more quantitative approach
to determine the dynamical critical exponent z than the one
given in the presentation of Werner et al., so we will use the
exposition of our results to detail the method. This method is
essentially the same as the one applied by the authors of
Refs. 28 and 29 for spin glasses in a transverse field, but as it
is rather scantily described in the literature, we include it
here for completeness.

The basis of our approach is as follows. For systems with
isotropic scaling, a well-known method to determine the
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FIG. 1. Phase diagram for the 2D quantum Ising model with site
dissipation for K�=−1 /2 ln�tanh 1�. The ordered phase is found for
large values of spatial coupling K and dissipation strength 	.
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value of the critical coupling is to calculate the Binder ratio

Q =
�m4�
�m2�2 , �3�

and use this to plot the Binder cumulant g1−Q /3 as a
function of coupling for several �e.g., cubic, in the
�2+1�-dimensional case� system sizes. The Binder cumulant
at the critical coupling is independent of system size �to lead-
ing order in L�, and the crossing point of g�K� for two dif-
ferent system sizes thus defines the �pseudo�critical point.

However, this finite-size scaling approach breaks down
when the system size scales anisotropically. In this case, the
scaling at criticality is given as a function with two indepen-
dent scaling variables instead of just one,

Q�L,L�� = G�L

�
,
L�

��
� , �4�

and anisotropic systems according to L�Lz are the appro-
priate choice instead of cubic systems. Hence, given the
value of z, one should also observe data collapse as a func-
tion of L� /Lz for the Binder cumulant curves at the critical
point.

In order to find z self-consistently, we consider first the
Binder cumulant as a function of L� for given 	, K and L.
For very small L�, the system appears effectively two-
dimensional, and consequently the increased influence of
fluctuations makes this system more disordered than the cor-
responding three-dimensional system. In the opposite limit
of L�→� the system appears effectively one-dimensional,
and with L���� the system is again disordered. As g is a
measure of the degree of order in the system, g→0 in both
the above limits, and accordingly g must have a maximum
for some finite value L�=L�

�. One way of interpreting L�
� is as

the temporal size for which the system appears as isotropic
as it possibly can be �or optimally three-dimensional�, the
anisotropic interactions taken into account.

The details of our procedure are as follows. First, we
sample the Binder ratio as a function of coupling K for a
large number of system sizes. For each value of L, we choose
at least 14 values of L� close to the presumed peak position
L�

� for the extent of the imaginary time dimension. The pro-
cedure for estimating z then follows in three steps. For each
K, curves of the Binder cumulant g for all L are plotted as a
function of L�, corresponding to the plot shown in panel �a�
of Fig. 2. Second, a fourth order polynomial fit is made to
these curves, localizing the points �L�

� ,g�� defining the peaks
of the functions g�L�� with good precision. The obtained val-
ues for the peak Binder cumulants for each L are then plotted
as a function of K, as shown in panel �b� of Fig. 2. A value
for the critical coupling Kc can be found by estimating the
value K to which the crossing point for two subsequent val-
ues of L converges for 1 /L→0. The third step for finding the
dynamical critical exponent is a simple finite-size scaling
analysis of the peak positions L�

� of the curves g�L�� as
shown in panel �c� of Fig. 2, assuming the relation L�

�=aLz,
with a being a nonuniversal prefactor. Finally, one may

check the self-consistency of the obtained values for Kc and
z by plotting the putative data collapse of the Binder cumu-
lant as a function of L� /Lz, cf. Eq. �4�.

Before moving on, we comment on the two interrelated
�subleading� finite-size effects in the crossing point of Fig. 2:
the crossing point between two subsequent Binder curves
moves toward lower coupling for increasing system size, and
accordingly the Binder cumulant at the crossing point de-
creases for increasing L. Consequently, the value of
g��K=Kc� will never be independent of system size L for
finite systems. However, in our experience, this vertical de-
viation from collapse of the Binder curves—which is par-
ticularly evident when focusing on the peak of the Binder
curves as in our analysis—does not itself affect the finite-size
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FIG. 2. �Color online� Illustration of the procedure for estimat-
ing the dynamical critical exponent z, as described in the text, here
for the 2D quantum Ising model with site dissipation and 	=0.2. �a�
The Binder cumulant g as a function of temporal system size L� for
a number of spatial system sizes L at K=0.160312. �b� The peak
value Binder cumulant g� as a function of coupling K. �c� Finite-
size analysis of the peak position of L�

� as a function of spatial
system size L at criticality, Kc=0.160312�2�, which yields the esti-
mate z=1.97�3�. The straight line represents a least-squares fit to
the data points.
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estimate for z. More important is a possible horizontal devia-
tion. Likewise, a slow convergence of the crossing points to
Kc complicates the determination of the critical coupling for
finite systems. The resulting uncertainty in z is dominated by
this uncertainty in Kc, at least for the d=2 case.

It might be possible to obtain better precision for the criti-
cal coupling by using the finite-size analysis technique pre-
sented in Ref. 30 for the crossing points, but in the present
case with an additional �and unknown� finite-size effect in z,
this more rigorous approach seems by no means straightfor-
ward. To ensure that finite-size effects are negligible, we
have checked the dependence of z on the lowest value of L
included in the fitting procedure. In the analysis illustrated in
Fig. 2, we have only retained system sizes such that the value
of z seems to have converged. For the case 	=0.2 considered
above, the resulting estimate is z=1.97�3�. No significant
variation in the dynamical critical exponent is observed for
stronger dissipation, and we conclude that we have z�2
along the critical line. However, we have not been able to
determine conclusively whether or not one has exactly
anomalous scaling dimension �=0 in the relation z=2−�,
which might be expected10 since the value d+z lies at the
upper critical dimension for this phase transition for d=2.

We also give an estimate of the correlation length expo-
nent � using the peak values g��K� of the Binder cumulant.
The leading order scaling properties of the Binder ratio can

be stated as31 Q�K ,L�= G̃�	K−Kc
L1/��, and assuming negli-
gible finite-size effects in the obtained dimensions L�

��L�, one
finds the finite-size relation

log
dg�

dK
= C +

1

�
log L , �5�

The slope dg� /dK is estimated by the finite difference �g�

over a small coupling interval around Kc, and C is an unim-
portant constant. The resulting finite-size analysis for 	
=0.2 is illustrated in Fig. 3, and we find �=0.49�1�. This is
very close to the expected �mean-field� value �=1 /2 �Ref.
10�, which is reasonable given that z�2.

We finally note that, whereas increasing 	 does not lead
to a significant change of z, it certainly does increase the
prefactor a of the scaling relation L��Lz and thereby the
peak position L�

�. This reflects the increased anisotropy of the
interactions, and can be seen also for 	=0 when K and K�

are allowed to vary freely. At criticality one has a=1 for
K�=K, with increasing a for increasing anisotropy K� /K. In
fact, for the analytically solvable 2D Ising model there even
exists an exact mapping between system size anisotropy �i.e.,
a� and interaction anisotropy �i.e., K� /K�.32

III. QUANTUM ISING CHAIN WITH BOND DISSIPATION

In this section, we will consider a �1+1�-dimensional
quantum Ising model where the dissipative quantities of in-
terest are bond variables involving Ising spins, rather than
individual Ising spins themselves. The specific form of this
dissipation kernel has been proposed as a candidate for de-
scribing the origin of the anomalous normal state properties
of the cuprate high-Tc superconductors,20 but in that case
involving two sets of Ising spin on each lattice point. Such a
model, unlike the one we will consider, may be mapped onto
a four-state clock model, and may be approximated by an XY
model with a fourfold symmetry breaking field, which in the
classical case in two spatial dimensions is perturbatively ir-
relevant near criticality on the disordered side. Due to the
degrees of freedom in our model being Ising spins with a
spin gap, the present model should therefore not be regarded
as directly comparable to a dissipative XY model that the
authors of Ref. 20 consider. It should rather be regarded as a
simple, but spatially extended model system, illustrating how
bond dissipation can affect a quantum phase transition,
which is certainly an important question on its own right.

In Fourier space, the action is given by

S = �
q

�
�
�K̃q2 + K̃��

2 +
	

2
���q2�
q,�
−q,−�. �6�

The real space representation of this system is given by the
action

S = − K�
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�
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cf. the site dissipation case in Eq. �2�. Here, �
x,�
x+1,�
−
x,�.

The interpretation of this representation remains mostly
the same as in the previous section. The only difference is
that the coupling to the heat bath is given in terms of the
Ising field gradients rather than the Ising fields themselves.
In the limit q→0, �→0, we may anticipate from the Fourier
representation of the action that the last term becomes irrel-
evant, which implies the value z=1 for the dynamical critical
exponent. It is also evident from Eq. �7� that the bond dissi-
pation is less effective than site dissipation in reducing quan-
tum fluctuations. While site dissipation tends to align all
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FIG. 3. Finite-size analysis for obtaining 1 /� for the 2D quan-
tum Ising model. Here we have evaluated the slope of the Binder
cumulant g� around K=0.160312 for 	=0.2, which yields �
=0.49�1�. The straight line represents a least-squares fit to the data
points.
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spins in the temporal direction, the bond dissipation tends to
align the difference of nearest-neighbor spins along the Trot-
ter slices. At least in the presence of a finite coupling K�0,
this is a less effective way of reducing temporal fluctuations
of individual spins than onsite dissipation.

When expanding the dissipative term, it becomes clear
that it contributes to both ferromagnetic and antiferromag-
netic long-range interaction. This renders the system intrac-
table to the Luijten-Blöte variant cluster algorithm used in
the previous section. This algorithm builds up clusters with
sizes comparable to the entire system and flips these as a
whole, resulting in extreme correlations.33 No cluster algo-
rithm that effectively handles competing interactions has
come to the authors’ attention.

In the Monte Carlo simulations, we have therefore used a
parallel tempering34,35 algorithm which adequately handles
the critical slowing down in the critical regime. A number of
independent systems perform random walks in the space of
coupling values, and this enables the systems to effectively
explore a rugged energy landscape like the one generated by
the dissipation term in Eq. �7�.

The coupling values are distributed according to the itera-
tion procedure introduced by Hukushima,36 which renders
the accept ratio of the attempted exchange of two adjacent
coupling values independent of the coupling value. Conse-
quently, the systems are allowed to wander relatively freely
through the space of coupling values, although even more
sophisticated distribution algorithms are available in that
respect.35

The parameter K� is fixed at ln�1+�2� /2�0.4407, the
critical coupling Kc is thus the same as for the isotropic 2D
Ising model when the dissipation strength is tuned to zero.
Anticipating z=1, this choice also ensures that the simula-
tions will be performed for convenient values of L and L�.
The further steps necessary to find information about the
critical properties are the same as discussed in Sec. II. The
phase diagram of the system in the 	-K plane is shown in
Fig. 4.

For this model, the critical exponents are extracted for the
two dissipation strengths 	=0.1 and 0.2. In Fig. 5, we show

the results for the dynamical critical exponent for 	=0.1 as
illustrated by the collapse of the Binder cumulant curves
discussed in Sec. II for the value z=1. The results confirm
the proposed value of z based in naive scaling arguments,
and it appears that the bond dissipation term is indeed
irrelevant.

The value of the dynamical critical exponent is very sen-
sitive to finite-size effects and therefore challenging to obtain
with the algorithm we have used given the limitations this
entails. Increasing the dissipation strength makes these chal-
lenges more apparent, so to illustrate the dependence of z on
system size we plot in Fig. 6 z as a function of system size
for a fixed K=Kc for 	=0.2. Note that three adjacent L val-
ues have been used to calculate every value for z, �L� denot-
ing the average of these. The evolution of z is clearly seen to
approach z�1 in the thermodynamic limit. Even larger dis-
sipation strengths tend to require much larger system sizes
not practically feasible with the current algorithm. Results
for such dissipation strengths are therefore not included here.

We have also attempted to extract the correlation length
exponent � for both dissipation strengths. When discarding
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FIG. 4. Phase diagram of the quantum Ising chain with bond
dissipation for K�=ln�1+�2� /2. The ordered phase is found for
large values of spatial coupling K and dissipation strength 	. The
filled square on the 	 axis represents an upper bracket for critical
coupling 	c when the spatial coupling is tuned to zero, see the text.
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the smallest system sizes where finite-size effects are ex-
pected to be important, the values are found to be �
=1.00�2� for 	=0.1 and �=1.005�8� for 	=0.2. This corre-
sponds well with the exact value �=1 expected for the uni-
versality class of a 2D Ising model.

Sufficiently strong dissipation brings the critical coupling
Kc toward zero, and, as indicated on the 	-axis of the phase
diagram in Fig. 4, the model undergoes a purely dissipative
phase transition at some critical dissipation strength 	c. The
ground state at K=0 consists of columns in the direction of
imaginary time of ordered Ising spins. However, the direc-
tion of ordering is in general not uniform, as can be seen
from Eq. �7�, since a column can be flipped as a whole with
no cost of energy. This nonuniform order prohibits the use of
Binder cumulant curves to determine the critical coupling, so
the exact value of 	c is difficult to deduct from the simula-
tions. These obstacles make an estimate of the dynamical
critical exponent unfeasible by our methods. Furthermore,
since this phase transition is not of Kosterlitz-Thouless na-
ture, any variety of the method of Ref. 27 also seem to be
inapplicable to this model.

To corroborate that, there is in fact a phase transition to an
ordered state for increasing 	 also at K=0, we present in Fig.
7 results for the temporal spin-spin-correlation g���
= �
x,�
x,0�. It is clear that this correlation function decays
exponentially to zero for low dissipation strengths, while in
the opposite limit of strong dissipation the correlation func-
tion quickly decays to some finite value. The character of the
correlation function as 	 is tuned through the intermediate
region is better illustrated in Fig. 8, where we have extracted
the temporal correlation length ��. The diverging correlation
length signifies a critical region with algebraic decay of the
correlation function. The spatial correlation length �, on the
other hand, we have found to be vanishing also in the critical
region, and the behavior of the system depends only very
weakly on its spatial extent L. From a crude finite-size analy-

sis based on Fig. 8, we obtain the value 	c�0.64 as a best
estimate for a upper bracket of the critical coupling, as we
indicated in the phase diagram in Fig. 4.

IV. DISCUSSION

We will begin the discussion of our results by taking a
closer look at the scaling arguments presented in Sec. I for
finding the dynamical critical exponent. As indicated here,
one important caveat of such arguments is that they only tell
what exponent is naively expected to the lowest order ap-
proximation, and in general field-theoretical methods �see,
e.g., Ref. 10� are needed to ascertain how higher order cor-
rections modify this estimate. Furthermore, with several
terms in the quadratic part of the action, it is not always
obvious which terms should be required to balance at the
critical point, or for which phase transitions this is valid.

For site dissipation, one obtains z=2 by balancing the
spatial term and the dissipative term, since the dynamic term
will be subdominant to the dissipative term for all positive z.
For the bond dissipation case, a similar argument excludes
the possibility z=2 for which the dissipative term would bal-
ance the dynamic term, since they both would be subdomi-
nant to the spatial term for all z�1. It is therefore interesting
to ask if the possibility z=0, or alternatively z�1, can be
considered. In the limit that z is strictly zero, a dissipative
term on the form ��� would balance the dynamic term
whereas a dissipative term on the form q2��� would balance
the spatial term, but in the latter case both would be sub-
dominant to the dynamic term. One interpretation is that z
=0 in both cases would imply unrestrained quantum fluctua-
tions resulting in spatial correlations being infinitely stronger
than temporal correlations, so that each Trotter slice is essen-
tially independent. In this interpretation, a strictly vanishing
dynamical critical exponent may however be considered un-
physical since we are assuming a transition to uniform order
for the entire �d+1�-dimensional system by taking the limit
q→0, �→0.

Likewise, tuning K�→0 may be considered unphysical
since one removes the origin of the quantum nature of the
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FIG. 7. The temporal spin-spin correlation function g���
= �
x,�
x,0� for the 1D quantum Ising chain with bond dissipation at
K=0 with L=20 and L�=600. The decay of the correlation function
is illustrated for four different dissipation strengths as the system
goes from the disordered phase �	=0.52� to the ordered phase
�	=0.68�.
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FIG. 8. �Color online� The temporal correlation length �� as a
function of dissipation strength 	 for the 1D quantum Ising chain
with bond dissipation at K=0. Because of the extremely anisotropic
scaling in this limit, and to be sure to avoid any spatial finite-size
effects, we have chosen to fix L=20.
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system. For this reason one cannot say that there will exist a
quantum phase transition with z=0 for the bond dissipation
model even if the �2 term had been removed from the action.
The origin of the �2 term in a physical quantum model can
be a transverse magnetic field in the Ising case or a Joseph-
son charging energy in the XY case, and the interpretation of
the prefactor K� is in general the inertia of the degrees of
freedom. Even though we have chosen to operate with a
nonspecific parameter K�, we therefore do not regard taking
K�=0 admissible in our simulations.

The opposite limit of z=� may similarly be interpreted as
spatially local criticality with correlations in the imaginary
time direction independent of �the vanishing� correlations in
the spatial directions, see, e.g., Refs. 16, 17, and 20. This is
trivially the case in the limit K=0 for site dissipation with
	�	c, although one may argue that z is undefined in that
case as the system is strictly decoupled in the spatial direc-
tions. The same argument cannot be applied to bond dissipa-
tion. For that model, the system does not experience dimen-
sional reduction as K→0, but is still dependent �although
very weakly� on the spatial extent of the �d+1�-dimensional
system. We should however note that the approach taken
here for determining the dynamical critical exponent is not
applicable when z is either strictly zero or infinite, and also
for a constant value z�1 it would be very difficult to deter-
mine the dynamical critical exponent for practically attain-
able lattice sizes. If, on the other hand, one has z→� in the
sense of activated dynamical scaling, the method is in prin-
ciple feasible.19

Before continuing the discussion of the bond dissipation,
we comment further on the relation between the real space
representation of q2��� and the form of the bond dissipation
used in Eq. �7�. When Fourier transforming q2���
q,�
−q,−�

from Eq. �6� and discretizing the resulting differential opera-
tors, we arrive at

Sq2���  − � �

L�
�2 �
x,� · �
x,��

sin2��/L��� − ����
. �8�

Now, writing out the last term of Eq. �7� and comparing with
Eq. �8� shows that the Fourier space representation of the
bond dissipation can be written as

Sbond = �q2��� + C�q2�
q,�
−q,−�. �9�

Here, C� depends weakly on dimensions for finite systems.
In other words, the bond dissipation is of the same form as
q2��� dissipation, but with renormalized spatial nearest-
neighbor coupling, which however does not alter the critical
exponents of the model. This extra term originates with the
counterterm introduced to cancel out the renormalization of
the bare potential that arises due to the coupling with a heat
bath.3 For the Ising model, this renormalization is respon-
sible for stabilizing ferromagnetic order at K�0.

We will now turn to the analysis of simulations on finite
lattices, in particular with respect to the scaling relation L�

=aLz and the system anisotropy expressed by it. To interpret
our results, it is useful to consider the dependence of both z
and a on the dissipation strength 	, and the variation in these
quantities can be understood as follows. If the dissipation

term is relevant and thus determining the universality class,
we may assume that the value of z will be given by the form
of this term even for infinitesimal 	�0 in the thermody-
namic limit. In this case, increasing the dissipation strength 	
further will therefore not change z, but the prefactor a will
have to change to reflect the increased interaction anisotropy.
Correspondingly, when the dissipation term is an irrelevant
perturbation, the dynamical critical exponent will remain z
=1 in the thermodynamic limit. Upon increasing 	, the dis-
sipation will never grow strong enough to alter the univer-
sality class, but the nonuniversal prefactor a will in general
change also in this case, and whether it increases or de-
creases is determined by how the dissipation changes the
overall interaction anisotropy.

Regarding the evolution of a upon increasing 	 for the
bond dissipation case, there are now two effects that must be
considered separately. One implicit effect is that increasing 	
decreases K=Kc at criticality, thereby increasing the aniso-
tropy ratio K� /K, which results in a much larger a for large
values of 	. The other effect is that arising explicitly from
the dissipation term and its contribution to the effective cou-
pling strength in the imaginary time direction. Whereas a site
dissipation term obviously increases the anisotropy when in-
creasing the dissipation strength while keeping the other cou-
pling values fixed, such an enhancement of a does not appear
for bond dissipation. This can be seen—as we have
checked—by evaluating a for increasing 	 for isotropic
short-range coupling, i.e., K�=K. One possible interpretation
of this result is that although bond dissipation does not
change universality, it favors z�1 behavior, which can also
be recognized from Fig. 6. In other words, the dissipation
term contributes to making the temporal dimension less or-
dered than the spatial dimension, in strong contrast to the
case of site dissipation. This would in part explain why one
needs much longer simulations and larger systems to obtain
reliable results for strong bond dissipation.

Given that the exceedingly strong finite-size effects thwart
a precise determination of z for higher values of 	, one
should in general also consider the possibility of continu-
ously varying critical exponents. However, we have shown
that z�1 for 	=0.1 and presented solid arguments favoring
that this is the case also for 	=0.2, as it is obviously also in
the limit 	=0. Therefore, if the exponents are in fact con-
tinuously varying, they begin to vary only for dissipation
strengths above 	�0.2, and would furthermore have to be
varying very slowly.

V. CONCLUSION

This work represents a further step toward simulations of
physically interesting extended quantum systems with dissi-
pation. Using Monte Carlo methods, we have studied a
model similar to that by Werner et al.,13 but with higher
spatial dimensionality, as well as a model with one spatial
dimension but with bond dissipation instead of site dissipa-
tion. We have found that the �2+1�-dimensional model
with site dissipation has a dynamical critical exponent very
close to the corresponding d=1 model, i.e., z�2. Bond
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dissipation, on the other hand, is fundamentally different,
and our results strongly suggest that this form of dissipation
is irrelevant to the universality class, i.e., z�1 and nonvary-
ing. We therefore believe that the same dynamical critical
exponent also applies to �2+1�-dimensional models with
bond dissipation for the same degrees of freedom, although
we have not been able to reach sufficiently large systems to
show this convincingly by numerical means. In both cases,
the numerical estimates for the dynamical critical exponent

is consistent with those found by naive scaling arguments on
the quadratic part of the action.
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